Midterm 2: Math 20D Midterm Exam 05/24/2023

Instructor: Finley McGlade

You ha	ve 50	minutes.	
--------	-------	----------	--

You are permitted the use of a **scientific** calculator and a double sided page of handwritten notes.

UNLESS THE QUESTION SPECIFICALLY SAYS OTHERWISE YOU MUST SHOW ALL YOUR WORKING.

Name		
PID		

"I have adhered to UCSD policies on academic integrity while completing this examination."

Signature ____

The exams consists of 8 pages (including the cover page) with four questions. The maximum possible score is 30+30+30+20=110 points. The first thing you should do when writing time begins is CHECK to make sure you have all 8 of the pages.

Good luck!

Scratch Working Page

Problem 1. (30 points) Answer the question below by either writing TRUE or FALSE. No further justification is required. In parts (a) and (b) we make reference to the differential equation

$$ty'' - y' + (1 - t)y = te^t (1)$$

- (a) (6 points) True or False. The function $y(t) = e^t$ defines a particular solution to equation (1).
- (b) (6 points) True or False. If v(t) is a function that satisfies $v'(t) = te^{-2t}$ then $y(t) = v(t)e^t$ solves the homogeneous equation associated to (1).

- (c) (6 points) True or False. If a pair of functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ satisfy $\operatorname{Wr}[y_1, y_2](t) = t^3$ then the functions $y_1(t)$ and $y_2(t)$ are linearly independent over \mathbb{R} .
- (d) (6 points) True or False. If $f:[0,\infty)\to\mathbb{R}$ satisfies $\mathcal{L}\{f(t)\}(s)=\frac{s}{s^2-4}$ then

$$\mathcal{L}\lbrace e^{2t}f(t)\rbrace(s) = \frac{1}{2}\left(\frac{1}{s-4} + \frac{1}{s}\right).$$

(e) (6 points) True or False.

$$\mathcal{L}^{-1}\left\{\frac{e^{-3s} - 2se^{-s}}{s^2 + 4}\right\}(t) = \sin(t - 3)\cos(t - 3) - 2\cos(t - 1).$$

Problem 2. (30 points)

(a) (15 points) Using the method of variation of parameters, find a particular solution to the differential equation

$$y''(t) + 4y(t) = \frac{1}{\sin(2t)}.$$

(b) (15 points) Solve the equation in (a) for the initial conditions $y(\pi/4) = y'(\pi/4) = 0$.

Problem 3. (30 points)

(a) (15 points) Calculate the inverse Laplace transform

$$\mathcal{L}^{-1}\left\{\frac{18}{(s-2)(s^2+2s+10)}\right\}(t).$$

(b) (15 points) Using the method of Laplace transform, solve the initial value problem

$$y''(t) + 2y'(t) + 10y(t) = 18e^{2t}, y(0) = 0, y'(0) = 3.$$

Problem 4. (20 points) All that is known concerning a mysterious differential equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t)$$

is that $e^t + \cos^2(t)$, $e^t - \sin(t)^2$, and $e^t + \sin^2(t)$ are solutions.

(a) (10 points) Show that $y_1(t) = 1$ and $y_2(t) = \cos(2t)$ give a pair of linearly independent solutions to the associated homogeneous equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0.$$

Hint: The identity $\cos(2t) = \cos^2(t) - \sin^2(t)$ may prove useful here.

(b) (10 points) Calculate the function p(t).

Scratch Working Page

A TABLE OF LAPLACE TRANSFORMS

$$F(s) = \mathcal{L}\{f\}(s)$$

$$F(s) = \mathcal{L}\{f\}(s)$$

$$\frac{1}{a}F\left(\frac{s}{a}\right)$$

20.
$$\frac{1}{\sqrt{t}}$$

$$\frac{\sqrt{\pi}}{\sqrt{s}}$$

2.
$$e^{at}f(t)$$

$$F(s-a)$$

21.
$$\sqrt{t}$$

$$\frac{\sqrt{\pi}}{2s^{3/2}}$$

3.
$$f'(t)$$

$$sF(s) - f(0)$$

23.
$$t^r$$
, $r > -1$

22. $t^{n-(1/2)}$, $n=1,2,\ldots$

$$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+(1/2)}}$$

4.
$$f^{(n)}(t)$$

$$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0)$$

$$\frac{\Gamma(r+1)}{s^{r+1}}$$

$$-\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$$

$$\frac{b}{s^2 + b^2}$$

5.
$$t^n f(t)$$

$$(-1)^n F^{(n)}(s)$$

25.
$$\cos bt$$
 26. $e^{at} \sin bt$

$$\frac{s^2 + b^2}{b}$$

$$6. \ \frac{1}{t}f(t)$$

$$\int_{s}^{\infty} F(u) du$$

$$\frac{F(s)}{s}$$

27.
$$e^{at}\cos bt$$

$$\frac{(s-a)^2 + b^2}{s-a}$$

7.
$$\int_0^t f(v) dv$$

$$\frac{(s-a)^2+b^2}{\frac{b}{a^2-b^2}}$$

8.
$$(f * g)(t)$$

9. f(t+T) = f(t)

$$\frac{s}{s^2 - b^2}$$

10.
$$f(t-a)u(t-a), a \ge 0$$
 $e^{-as}F(s)$

$$\frac{\int_0^T e^{-st} f(t) dt}{1 - e^{-sT}}$$

30.
$$\sin bt - bt \cos bt$$

$$\frac{2b^3}{(s^2+b^2)^2}$$

11.
$$g(t)u(t-a), a \ge 0$$

$$e^{-as}\mathcal{L}\{g(t+a)\}(s)$$

$$\frac{2bs}{(s^2+b^2)^2}$$

12.
$$u(t-a), a \ge 0$$

$$\frac{e^{-as}}{a}$$

$$32. \quad \sin bt + bt \cos bt$$

$$\frac{2bs^2}{(s^2+b^2)^2}$$

13.
$$\prod_{a,b}(t)$$
, $0 < a < b$

$$\frac{e^{-sa}-e^{-sb}}{s}$$

33.
$$t\cos bt$$

$$\frac{s^2 - b^2}{(s^2 + b^2)^2}$$

14.
$$\delta(t-a), a \ge 0$$

$$e^{-as}$$

$$\frac{s^4 + 4b^4}{2b^2s}$$
$$\frac{2b^2s}{s^4 + 4b^4}$$

36.
$$\sinh bt - \sin bt$$

$$\frac{2b^3}{s^4 - b^4}$$

 $2b^2s$

17.
$$e^{at}t^n$$
, $n = 1, 2, ...$

16. t^n , n = 1, 2, ...

$$\frac{n!}{(s-a)^{n+1}}$$

37.
$$\cosh bt - \cos bt$$

38. $J_{\nu}(bt), \nu > -1$

$$\frac{\overline{s^4 - b^4}}{\left(\sqrt{s^2 + b^2} - s\right)^{\nu}}$$

18.
$$e^{at} - e^{bt}$$

$$\frac{(a-b)}{(s-a)(s-b)}$$

19.
$$ae^{at} - be^{bt}$$

$$\frac{(a-b)s}{(s-a)(s-b)}$$